
Inspecting and Repairing Physical Topology in a

Moving Grid Grain Growth Simulation1

Andrew Kuprat

Theoretical Division, Group T-1, Mailstop B-221

Los Alamos National Laboratory

Los Alamos, NM 87545

kuprat@lanl.gov

Abstract

Simulation of metallic grain growth in 3-D is performed by using a moving

grid of tetrahedra and conforming interfacial triangles. Each metallic grain

is discretized using several hundred tetrahedra in the Los Alamos grain

growth simulation code Grain3D [1], with the support of the Los Alamos

unstructured grid toolbox, LaGriT [2]. As the interfaces evolve by mean

curvature motion, the grains coarsen: some grains grow at the expense of

others, and the total number of grains decrease as a function of time. The

disappearance of grains is one of several topological changes that must be

undertaken by the simulation. This paper describes the algorithms used

to perform topological changes in the grain growth simulation. It is hoped

that some of these algorithms will have application in other �elds beyond

grain growth simulation, such as etching and deposition simulations where

complex topological changes are modeled.

Introduction

Problematic physical topologies in metallic microstructure simulations can

be classi�ed as \illegal" or \disappearing". An example of an illegal topol-

ogy is when 5 or more materials meet at a single point in 3D space. More

precisely, due to energy minimizing considerations, such a topology does not

occur in a soap froth [3]; our grain growth simulation Grain3D, which uses

a mean curvature motion physical model, is governed by the same energy

considerations and obeys the same topological restrictions. An example of

a \disappearing" topology is when a grain is small and is getting smaller.

In a short amount of time, the grain will disappear and the simulation

topology will have to change. The case of illegal topologies is handled by

1This research is supported by the Department of Energy under contract W-7405-

ENG-36.

the popcones algorithm and the case of disappearing topologies is handled

by the popcomponents algorithm.

In popcones, we examine all vertices and look at all the incident ma-

terial \cones". (In a small neighborhood of a particular vertex V , incident

materials will have the topology of several cones meeting at a point.) If

the connectivity of the cones is deemed to be illegal, we repair the topology

(i.e., \pop" the cones). To limit the e�ects of this repair process to a small

neighborhood of vertex V , new vertices are created close to V and new

small tetrahedra are created which are incident on V . We will describe the

algorithms used.

In popcomponents, we loop through the unstructured tetrahedral

mesh and compute a data structure which re
ects the physical topological

components: regions (grains), interface surfaces, intersection lines where

three or more regions touch, and special points where intersection lines

meet. The data structure relates the various topological components us-

ing boundary operators which map topological components to neighboring

components that di�er in codimension by �1. Popcomponents then uses

geometrical criteria, such as sizes and collapse rates of the various compo-

nents, in order to determine which components are disappearing. The topo-

logical data structure is then consulted to determine an alternate topology

which will replace the disappearing topology. As in popcones, the repair

process involves insertion of nodes and creation of small tetrahedra in the

neighborhood of the changing components.

Finally, we will show some images from recent simulations where

Grain3D has been used to simulate a system of 650 grains, involving thou-

sands of topological components and hundreds of thousands of tetrahedra.

Removal of Illegal Physical Topologies in the Tetrahedral
Mesh

Long ago, Plateau [4], after numerous experimental observations, conjec-

tured that only certain topologies were allowed in a soap froth. Speci�cally,

lines of intersection of soap �lms were supposed to be formed when three

�lms intersected, each making an angle of 120o with each other. In turn,

points at which \triple lines" intersect where supposed to be formed when

four lines intersect with each other, each pair of lines making the tetrahedral

angle (109o) with each other. (The conjecture is di�erent when the soap

�lms intersect an external boundary.) Much later, Plateau's requirements

were rigorously proven by Jean Taylor using the methods of geometrical

measure theory [3]. In our grain growth simulation, we need to enforce

the topological aspects of Plateau's requirements. The Gradient Weighted

Moving Finite Element method [5][6][7] used to continuously move the sur-

faces by mean curvature will ensure that the angles the surfaces and triple

lines make with each other are correct given that the grid topology is cor-

rect. To enforce the correct grid topology, we use the popcones algorithm.

Action taken to establish Plateau's requirements

Each grain (i.e. material region separated from adjacent regions by sur-

faces) is given a unique \material" number. Although technically we are

modeling grains that may all be made of the same material (i.e. aluminum)

and which di�er in crystal orientation, for our purposes we call each grain

a di�erent \material".

When a mesh component c (an edge e or a node i) fails Plateau's re-

quirements, there are usually \too many" material components incident

upon c; the crowding of components at c forces some components to not be

adjacent to each other. The typical cases are four materials incident on an

edge and �ve materials incident on a node. In this case, we will perform

actions to detach one of the components from c. This is the origin of the

name \popcones". The material components incident on c are in the shape

of cones (with polygonal bases) if c is a node. If c is an edge, the incident

material components projected on a plane orthogonal to the edge are 2-D

cones (i.e. pie slices). Popcones �xes illegal topologies by detaching or

\popping" one of the material cones.

To determine this \losing" component, we calculate the angle subtended

by each component. For the case of a component incident on an edge, we

add up the dihedral angles of all the tetrahedra that constitute that com-

ponent to arrive at an angle for the component. In the case of a component

incident on a node i, we add up the solid angles of all the constituent tetra-

hedra at node i. The heuristic we use is that the losing component|the

component that will be detached|will be the one subtending the smallest

angle. This is reasonable, since the surfaces bounding each component ex-

ert surface tension forces and the component subtending the smallest angle

will have the greatest alignment of forces, leading to the greatest tendency

to \pull away" from c.

The method of detaching the losing component (call it cL) will be by

\recoloring" (changing the material of) cL in a very small neighborhood of

c. The neighborhood is to be con�ned to be within a cylinder of radius

cut length with e as axis or a ball of radius cut length with i as origin.

The parameter cut length is setable by the user and smaller values lead

to smaller time errors in the motion of the surfaces in our simulation. The

small amount of cL that is \lost" will be replaced by an adjacent \winning"

component cW . Our heuristic is to choose cW to be the component adjacent

to cL which subtends the largest angle.

To ensure that all recoloring occurs in the required small ball or cylinder,

we loop through all the edges eL in the mesh that are incident on c and

which themselves contain component cL. Let eL = n1; n2, where n1 is in

c (either an endpoint of e or the node i) and n2 is not in c. If n2 is has

distance > cut length from c, we re�ne eL at its midpoint, or at a point

a distance cut length from c, whichever is closer.

If no re�nements are necessary, we \recolor" cL; we change all the ma-

terial tags of the tetrahedra in cL to the material of cW . However, if

re�nements are necessary, we perform them and then recolor the resulting

smaller tetrahedra.

We call popcones whenever the topology of the mesh has been changed

for any reason, in order to recertify that the mesh topology satis�es Plateau's

requirements.

Removal of \Disappearing" Physical Toplogies in the Tetra-
hedral Mesh

Even if a mesh formally satis�es the Plateau requirement, there may be

topological features that are very small that need to be removed. Since the

GWMFE code is able to move surfaces but is not able to change topolo-

gies, it will shrink volumes (grains) to nearly zero volume, surfaces (grain

interfaces) to nearly zero area, and intersection lines (grain triple junc-

tions) to nearly zero length. If the tiny topological components are not

removed or \popped", the computational grid will e�ectively be stagnated

at a topology that does not mirror the physical topology in real life. The

command that removes the disappearing topological components is called

popcomponents.

Popcomponents data structure

The tetrahedral grid contains volumes, surfaces, and intersection lines de-

�ned by the material tags of the tetrahedra and by the external surfaces.

I.e., the triangles between adjacent tetrahedra of di�ering materials are

parts of surfaces, and so are those triangular faces that appear on the ex-

ternal surfaces. In order to be able to do its work, popcomponents must

compile a list of all the topological components (volumes, surfaces, inter-

section lines, and special points that are at the intersection of intersection

lines), and it must somehow store the relationships between these compo-

nents. This is done by computing the topological components in ascending

order of codimension.

We start by �nding the topological components that have codimension

zero|the volumes. We start with the �rst tetrahedron in the mesh T1,

we note its material m, and then we use the tetrahedral element-element

relation to �nd all of its face neighbors which also are of material m. We

proceed recursively until we have found the entire component consisting

of tetrahedra that have material m and are connected to T1 through the

element-element relation. (This is the maximal uniform-material face con-

nected set of tetrahedra containing T1.) We call this component c1. We

then �nd the �rst tetrahedron that is not in c1 and then derive a new com-

ponent c2 that contains that tetrahedron. We continue in this fashion until

we �nd the last component cnv . At this point we have found the nv grains

or volumes that comprise the computational mesh. These are the �rst nv
topological components|all the components of codimension zero.

During the compilation of the components of codimension zero, we keep

track of the triangles found that separate these components from each other

and from the external surfaces. We now take the �rst such triangle �1

and, for each of its three edges, �nd if there are unique triangles that share

those edges with �1. We proceed recursively until we have found the en-

tire component consisting of triangles that are connected to �1 through

\bivalent-edge-connected paths". (Precisely, we say that �a and �b are

bivalent-edge-connected if there is a path �a � �(1); : : : ;�(m) � �b such

that each consecutive pair of triangles �(i), �(i+1) share an edge and they

are the only two triangles that share that edge.) We call this component

cnv+1. Starting with the next unclaimed triangle, we generate component

cnv+2, and proceed in this fashion until we have used up the last trian-

gles with component cnv+ns. At this point we have found the ns surfaces

contained in the computational mesh. These are all the components of

codimension one. (Note: for purposes of this algorithm, edges separat-

ing distinct exterior surfaces, such as the top and side of a box, are not

counted as being bivalent. This ensures that the exterior surfaces will each

be separate components.)

During the compilation of the components of codimension one, we keep

track of the non-bivalent edges, and generate components cnv+ns+1; : : : ;

cnv+ns+nl. Each of these components consist of non-bivalent edges that

can be strung together end-to-end, and which terminate at \non-bivalent

nodes": nodes which have less or more than two incident non-bivalent edges.

At this point we have found the nl intersection lines contained in the com-

putational mesh. These are the components of codimension two.

Finally, the np nodes which terminate the nl intersection lines are

called components cnv+ns+nl+1; : : : ; cnv+ns+nl+np . These are the np \spe-

cial points" contained in the computational mesh which are the components

of codimension three.

(We note there that it is clear that this algorithm could be generalized

to �nding the topological components of a face connected collection of sim-

plices (possessing material tags which implicitly de�ne the components) in

dimensions greater than three.)

Now while we are assembling a particular component c, we record which

lower codimensional (i.e. higher dimensional) components are bounded

by c. That is, we record which volumes are on either side of a surface

component, which surfaces are incident on an intersection line component,

or which intersection lines are incident on a special point component. We

can thus de�ne the boundary operator @ and the inverse boundary operator

@�1. For a component c, @c is the set of components that are incident on

c and which have dimension one lower than that of c. @�1c is the set of

components incident on c which have dimension one higher than that of

c. So for example, if c were a box, then @c would be the six faces of the

box, and if d 2 @c were one of the faces, @d would be the set of the four

bounding edges of the face. Further, if A is a set of components, we de�ne

@A � [c2A@c

and

@�1A � [c2A@
�1c:

Further we de�ne

@2c � @ � @

and similarly we de�ne @3,@�2, and @�3. So again for the example of c

being a box, then @2c would be the 12 edges of the box. If b were a corner,

@�1b would be the three edges incident on b and @�2b would be all the

faces incident on all the edges incident on b, which would be the three faces

incident on b.

Kinematical and geometrical criteria for removal of compo-
nents

Popcomponents needs to evaluate whether a component c is \disappear-

ing", and if so, it must take action to remove it.

Our primary criteria is kinematical. The GWMFE method computes

a velocity �eld _xi at each node i. Thus we can de�ne the rate of growth

or shrinking of the length, surface area, or volume of c. Since we know

the length, surface area, or volume of c, by simple linear extrapolation, we

can compute an estimated collapse time if c is shrinking. If the estimated

collapse time is within a user de�ned tolerance toldt of the present, we

will take action to remove c.

This was the only component removal criterion used in [1]. Although

the node velocities for the most part are de�ned by the physical system|

curvature forces and uniform isotropic viscous resistance to motion|there

are non-physical \regularization" forces as well. When a component is col-

lapsing and the topology does not change, the regularization terms kick in

when c has collapsed down to a very small diameter. Without these terms,

the tetrahedra comprising or bounding c would eventually have zero or

negative volume, and the simulation would terminate. This means that the

primary criteria can sometimes fail to indicate that removal is necessary|

the collapse rate of c has declined to nearly zero when c has a tiny diameter,

and hence the estimated collapse time is long or in�nite. We have thus de-

vised a secondary (geometrical) collapse criterion to signal removal of these

\stagnated" topologies.

First we compute an estimate of the diameter of c, and if this number

is greater than a user de�ned tolerance tol small, we conclude that the

geometrical criterion also indicates that no removal is necessary. If the

diameter is <tol small it may be possible that c was just freshly created

and that it would remain and/or expand under the action of the actual

PDE that we are trying to solve. If c is a volume, this is unlikely since it is

known that a grain would have to have at least about 14 faces in order to be

expanding, but grains with tiny diameter < tol small are never observed

to have that many faces in our simulation. Thus, if c is a volume with

diameter < tol small we say the geometrical criterion is satis�ed and we

ag c for removal.

If c is a surface or an intersection line of small size, there is a reasonable

chance that c is indeed stable or expanding. Thus the geometrical criterion

for removal of these components also includes a heuristic involving the

solid angles of the volume components incident on c. To understand this

heuristic, we have to divide the volume components incident on c into two

sets: c+ and c
�
.

Suppose c is an m-sided polygonal surface which may be expanding

or collapsing. The m sides of c are none other than @c. c bounds two

volumes|these volume regions are @�1c. Finally, there are m volumes

around the perimeter of c which we call the peripheral volumes. This set

of volumes are in fact the set (@�2@ n @�1)c � @�2@c n @�1c. That is, the

peripheral volumes are all the volumes incident on the boundary of c minus

the set of volumes that c itself bounds. We refer to the bounded set of

volumes as c+ and the peripheral set as c
�
. That is

c+ � @�1c

c
�

� (@�2@ n @�1)c:

Now suppose c is an intersection line which bounds m surfaces (@�1c),

which themselves bound the same number of volumes (@�2c). We say these

volumes are directly incident on c. The peripheral set of volumes (at either

end of c) are those volumes which are incident on @c but are not directly

incident on c. Denoting the directly incident set of volumes by c+ and the

peripheral set by c
�
, we have

c+ � @�2c

c
�

� (@�3@ n @�2)c:

Now we give the heuristic for removal of surface and line components c

that have diameter < tol small but which are not shrinking. Since c has

very small diameter, it appears to virtually be a point. So the components

in c+ [c
�
will appear to coincide at a point whose material component

connectivity probably does not satisfy the Plateau requirement. In this

case, the assumption of popcones was that the component cL subtending

the smallest solid angle at the point c would be the one to \pull away" and

would be the one disconnected from c. Since c is \nearly" a point, we can

in fact measure the solid angles subtended by the volume components in

c+ and c
�
. If the smallest solid angle is subtended by a directly incident

volume cL in c+, we conclude the pulling away of cL would cause c in fact

to shrink and hence that the component c should be
agged for removal. If

however we �nd that the component cL subtending the smallest solid angle

is in the set of peripheral volumes c
�
, we conclude that the pulling away

of cL would cause c to in fact grow, and hence that c should not be
agged

for removal.

Action taken to remove components
agged for removal

Suppose c is a surface or intersection line that is
agged for removal. In

the popcones algorithm, we allowed the component cL to pull away from

the point i of illegal topology by recoloring a small portion cL at i. In fact

we replaced the material tags of the tetrahedra of cL incident on i by the

material tags of the \winning component" cW which was the component

adjacent to cL that subtended the largest solid angle. If some of the tetra-

hedra in cL that were incident on i had edges at i that were longer than

the user-de�ned length cut length, we re�ned the tetrahedra so that only

tetrahedra within cut length of i had to be recolored. Analogous to that

we chose the losing component cL to be the component in c+ subtending

the smallest solid angle. We choose the winning component cW to be com-

ponent in c
�
that subtends the largest solid angle. Having chosen a winning

component cW , as with popcones, we recolor the tetrahedra in cL incident

on c with the material type of cW , but only after we have performed any

necessary re�nements to ensure that all edges of these tetrahedra that have

one endpoint in c and one endpoint not in c have length < cut length.

This recoloring of cL by cW allows cL to pull away and e�ectively replaces

c with a new and hopefully expanding topology. It is easy to verify with a

few diagrams that the annihilation of a three-sided surface with this recol-

oring leads to the creation of a triple line at the intersection of the three

formerly peripheral components, and the annihilation of a triple line with

one peripheral volume component at each end with this scheme results in

the creation of a three-sided surface separating the two formerly periph-

eral volumes. These two actions which are inverses of each other are very

commonly observed in soap �lms [8].

In the case that c is a collapsing volume, we recolor that small tetrahedra

that comprise c with the material color of one of components in c
�
�

@�1@c n c, the set of volumes incident on @c with c removed. Again, since

the diameter of c is small, we can e�ectively treat it like a point and evaluate

the solid angles subtended by the components of c
�
. We use the heuristic

of choosing the material tag of the component in c
�
subtending the largest

angle at c for the recoloring of c.

Sample Numerical Runs

We have been running our microstructure simulations on long rectangu-

lar domains which represent simulations of grain growth in the tiny metal

(usually aluminum) wires present in semiconductor devices. The simula-

tions can involve thousands of grains, each comprised of hundreds of tetra-

hedra. Since this implies there are tens of thousands of surfaces between

all the various grains, it is true that topological change is constantly oc-

curring. In Figure 1 we see a portion of a 1 � 1 � 50 line that started

with 650 grains and has already evolved down to having just a few hun-

dred grains at t = 0:1. (Eventually, at long times, the desirable asymptotic

microstructure is \bamboo" where all grain interfaces run perpendicular to

the direction of the wire. This kind of microstructure is less susceptible

to component failure.) In Figure 2 we that the portion of the line has un-

dergone visible topological change. The external top and front faces show

that grains have disappeared or changed neighbors. Of course, this kind of

(two-dimensional) illustration fails to show the complex topological changes

that have been modeled in the interior of the domain.

Figure 1: Portion of 1� 1� 50 line at t = 0:1.

Figure 2: Line at t = :15 with topological change visible on top and

front surfaces.

References

[1] A. Kuprat, Modeling Microstructure Evolution using Gradient-

Weighted Moving Finite Elements, SIAM J. Sci. Comput., in press.

[2] D.C. George, LaGriT User's Manual, http://www.t12.lanl.gov/~lagrit.

[3] Jean E. Taylor, The structure of singularities in soap-bubble-like and

soap-�lm-like minimal surfaces, Annals of Math., Vol. 103, pp. 489-

539, 1976.

[4] J.A.F. Plateau, Statique Experimentale et Theorique des Liquides

Soumis aux Seules Forces Moleculaires, Gauthier-Villiard, Paris, 1873.

[5] M.J. Baines, Moving Finite Elements, Oxford University Press, 1994.

[6] N. Carlson and K. Miller, Design and Application of a Gradient-

Weighted Moving Finite Element Code I: in One Dimension, SIAM

J. Sci. Comput., Vol. 19, pp. 728-765, 1998.

[7] N. Carlson and K. Miller, Design and Application of a Gradient-

Weighted Moving Finite Element Code II: in Two Dimensions, SIAM

J. Sci. Comput., Vol. 19, pp. 766-798, 1998.

[8] A.C. Ferro and M.A. Fortes, The Elimination of Grains and Grain

Boundaries in Grain Growth, Interface Sci., Vol. 5, pp. 263-278, 1997.

